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Abstract The southern green stinkbug Nezara viridula

(Linnaeus) has a number of sac-like outgrowths, called

crypts, in a posterior section of the midgut, wherein a

specific bacterial symbiont is harbored. In previous

studies on N. viridula from Hawaiian populations,

experimental elimination of the symbiont caused few

fitness defects in the host insect. Here we report that N.

viridula from Japanese populations consistently harbors

the same gammaproteobacterial gut symbiont, but, in

contrast with previous work, experimental sterilization

of the symbiont resulted in severe nymphal mortal-

ity, indicating an obligate host–symbiont relationship.

Considering worldwide host–symbiont association and

these experimental data, we suggest that N. viridula is

generally and obligatorily associated with the gut sym-

biont, but that the effect of the symbiont on host biology

may be different among geographic populations. Possible

environmental factors that may affect the host–symbiont

relationship are discussed.
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Introduction

Many insects that feed exclusively on nutritionally limited

diets, for example plant sap, have symbiotic microorgan-

isms in their bodies (Buchner 1965; Kikuchi 2009). The

insect suborder Heteroptera, so-called true bugs or stink-

bugs, embraces over 40,000 described species with sucking

mouthparts (Weirauch and Schuh 2011), and symbiotic

associations with bacteria tend to occur in plant-sucking

species. Such phytophagous stinkbugs have many sacs or

tubular outgrowths, called crypts or caeca, in a posterior

region of the midgut, which contain a dense population of

symbiotic bacteria (Buchner 1965; Glasgow 1914; Kikuchi

2009). Experimental removal of the symbiotic bacteria

from the host stinkbugs often results in retarded growth and

high mortality (Abe et al. 1995; Fukatsu and Hosokawa

2002; Hosokawa et al. 2006; Kikuchi et al. 2007, 2009),

indicating the biological importance of the symbionts for

their hosts.

The southern green stinkbug Nezara viridula (Linnaeus)

(Fig. 1a) is a cosmopolitan species distributed from trop-

ical to temperate regions of North and South America,
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Africa, Asia, Australia, and Europe (Todd 1989), and

known as a notorious agricultural pest that damages

diverse crop plants worldwide (Schaefer and Panizzi

2000). As in many phytophagous heteropteran species,

N. viridula has midgut crypts that harbor a specific bac-

terial symbiont. Previous studies on Hawaiian, North

American, and Brazilian populations of N. viridula con-

sistently identified the same gammaproteobacterial sym-

biont in the midgut crypts (Hirose et al. 2006; Prado et al.

2006, 2009). Female insects vertically transmit the gut

symbiont to their offspring via surface contamination of

eggs with symbiont-containing excrement (Prado et al.

2006). With laboratory strains of N. viridula from the

Hawaiian populations, Prado et al. (2006, 2009) showed

that experimental elimination of the symbiont by egg-

surface sterilization caused few fitness defects in the host

insect: symbiont-free insects developed normally and

reproduced as normal symbiotic insects did.

These previous studies suggest a facultative host–sym-

biont relationship in Hawaiian populations of N. viridula.

Here, by contrast, we report that in Japan, N. viridula is

associated with the gammaproteobacterial symbiont in the

midgut crypts, but the effect of the symbiont on the host

insect is strikingly different: without the gut symbiont, the

host insect can neither grow nor reproduce normally, sug-

gesting an obligate host–symbiont relationship in Japanese

populations of N. viridula.

Materials and methods

Insect materials

Table 1 lists samples of N. viridula examined in this study.

For rearing experiments, we used a laboratory stock of

N. viridula collected from a field of tomato (Solanum

lycopersicum Linnaeus) and okra (Abelmoschus esculentus

Linnaeus) in Katano, Osaka, Japan. We maintained the

insects on dry soybean seeds (Glycine max Linnaeus), raw

peanuts (Arachis hypogaea Linnaeus) and distilled water

containing 0.05% ascorbic acid at 25�C under a long-day

regimen (16 h light, 8 h dark).

Microscopic observation

The whole midgut was isolated from adult insects using

a pair of fine forceps under a dissection microscope in a

plastic Petri dish filled with phosphate-buffered saline

(PBS: 137 mM NaCl, 8.1 mM Na2HPO4, 2.7 mM KCl,

1.5 mM KH2PO4; pH 7.5), and photographed using a digital

camera (EC3, Leica) connected to a dissection microscope

(S8APO, Leica). From the whole midgut, the midgut fourth

section with crypts (Fig. 1b, c) was isolated and homoge-

nized in PBS. The suspension was stained with 4 lM 40,
6-diamidino-2-phenylindole (Invitrogen) and observed under

an epifluorescence microscope (Axiophoto, Carl Zeiss).

Fig. 1 The southern green

stinkbug Nezara viridula and its

gut symbiotic system. a An

adult female of N. viridula. b A

dissected alimentary tract of an

adult female. M1 midgut first

section, M2 midgut second

section, M3 midgut third

section, M4 midgut fourth

section with crypts, H hindgut.

c An enlarged image of the

midgut fourth section with

crypts. d Fluorescence image of

the gut symbiont cells

visualized by DNA staining

with 40,6-diamidino-2-

phenylindole
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DNA extraction, cloning, and sequencing

A midgut fourth section was dissected from each adult

insect as described above, and subjected to DNA extraction

using a QIAamp DNA Mini Kit (Qiagen). A 1.5-kb region

of the bacterial 16S rRNA gene was amplified with primers

16SA1 (50-AGA GTT TGA TCM TGG CTC AG-30) and

16SB1 (50-TAC GGY TAC CTT GTT ACG ACT T-30)
(Fukatsu and Nikoh 1998). Polymerase chain reaction

(PCR) was conducted with AmpliTaq Gold DNA poly-

merase (Applied Biosystems) using a temperature profile of

95�C for 10 min followed by 30 cycles of 95�C for 30 s,

55�C for 1 min, and 72�C for 2 min. Cloning and

sequencing of the amplified products were performed as

described elsewhere (Kikuchi et al. 2007).

Diagnostic PCR

A 0.83-kb region of the 16S rRNA gene of the gut sym-

biont of N. viridula was amplified with specific primers

MMAOf1 (50-GGG ATA ATG CCT AAT AYG CAT G-30)
and MMAOr1 (50-GCT TGC TCT TGC GAG GTT-30)
using a temperature profile of 95�C for 10 min followed by

30 cycles of 95�C for 30 s, 55�C for 1 min, and 72�C for

1 min. To check the quality of the DNA samples, a 0.65-kb

region of insect mitochondrial cytochrome oxidase I (COI)

gene was amplified with primers LCO1490 (50-GGT CAA

CAA ATC ATA AAG ATA TTG G-30) and HCO2198 (50-
TAA ACT TCA GGG TGA CCA AAA AAT CA-30)
(Folmer et al. 1994).

Molecular phylogenetic analysis

Multiple alignments of nucleotide sequences were gener-

ated using the software Clustal W (Thompson et al. 1994)

and the final alignments were corrected manually. Maxi-

mum likelihood, maximum parsimony, and neighbor-join-

ing phylogenies were inferred by use of the software

PhyML 3.0 (Guindon et al. 2010), PAUP 4.0b10 (Swofford

2001), and Clustal W (Thompson et al. 1994), respectively.

Egg-surface sterilization

Each mass of eggs of N. viridula was divided into two

parts. One part was left untreated and the other part was

treated with 70% ethanol for 10 min, then with 4% form-

aldehyde for 5 min, and finally rinsed thoroughly with 70%

ethanol twice. Each of the experimental masses of eggs

was kept in a Petri dish with a wet cotton ball at 25�C until

hatching. To confirm successful elimination of the symbi-

ont, hatchlings from the experimental egg masses were

subjected to DNA extraction and diagnostic PCR 2 days

after the molt to the second instar.

Fitness measurement

Time to hatching and hatching rate were recorded for both

the control and sterilized masses of eggs. The hatchlings

from the experimental mass of eggs were separately reared

as described above, and their growth and survival were

monitored until all the insects either became adult or died.

Table 1 Samples of Nezara viridula examined in this study

Sample information 16S rRNA gene

accession number

Refs.

Country Prefecture/state City/island Year Collector

Japan Osakaa Katano 2008 D.L.M. AB636641 This study

Kochi Nankoku 2007 D.L.M. AB636642 This study

Fukuoka Kitakyushu 2008 Mitsuo Baba AB636643 This study

Kumamoto Koshi 2008 Y.K. AB636644 This study

Kagoshima Amami-Oshima 2008 Yuki G. Baba AB636645 This study

Kagoshima Yakushima 2008 T.F. AB636646 This study

Kagoshima Tanegashima 2009 T.H AB636647 This study

Okinawa Nago 2009 T.H. AB636648 This study

Okinawa Ishgakijima 2009 T.H. AB636649 This study

Okinawa Miyakojima 2010 T.H. AB636650 This study

USA Hawaiib Hilo 2003 – AY679762c Prado et al. (2006)

– – – – EU072503c Prado and Almeida (2009)

Brazil – – – – AY830409–AY830414c Hirose et al. (2006)

–, Information not available
a Fitness effect of the gut symbiont was examined in this study
b Fitness effect of the gut symbiont was examined in Prado et al. (2006)
c These 16S rRNA gene sequences were retrieved from DNA databases
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The data were statistically analyzed by use of Fisher’s exact

probability test and the Mann–Whitney U test by use of the

software R v2.11.1 (R Development Core Team 2010).

Results

Characterization of gut bacterial symbiont associated

with N. viridula collected in Japan

In dissected alimentary tracts of N. viridula, the midgut

fourth section was consistently yellow in color and had a

number of crypts arranged in four rows (Fig. 1b, c).

Microscopic observations identified tubular bacterial cells

packed in the lumen of the midgut crypts (Fig. 1d). A 1.5-kb

region of the bacterial 16S rRNA gene was amplified,

cloned, and sequenced from each of the midgut fourth sec-

tions dissected from ten adult females of N. viridula origi-

nating from different Japanese populations (Table 1). All

the sequences were 1,464 bp in size and completely iden-

tical. BLAST searches with the sequence as query retrieved

gammaproteobacterial 16S rRNA gene sequences; the top

hit was the gut symbiotic bacterium of a Brazilian strain of

N. viridula (accession number AY830411; 99.7% (1447/

1452) sequence identity). Figure 2 shows the phylogenetic

placement of the gut bacterial symbionts of the Japanese

N. viridula samples on the basis of the 16S rRNA gene

sequences. The symbiont sequences from Japanese N. viri-

dula samples formed a well-defined clade, supported

by 100% bootstrap values, together with the symbiont

sequences from the Hawaiian, North American, and Bra-

zilian N. viridula samples. Slight genetic divergence was

observed between the Japanese symbiont sequences and the

Hawaiian/American/Brazilian symbiont sequences.

Disruption of symbiont transmission by egg-surface

sterilization

Egg masses of N. viridula were divided into two parts;

one part was left untreated and the other was surface-

sterilized. Nymphs from these experimental egg masses

were reared until the second instar and subjected to

diagnostic PCR detection of the symbiont. All the nymphs

from the control egg masses were symbiont-positive

(infected/total observed = 42/42, i.e. 100%), whereas all

the nymphs from the sterilized egg masses were symbi-

ont-negative (0/50, 0%).

Fitness effects of symbiont elimination on Japanese

N. viridula

No significant differences between control egg masses and

sterilized egg masses were detected for time to hatch

(mean ± SD: control 5.66 ± 0.48 days, n = 159; steril-

ized 5.64 ± 0.48 days, n = 168; Mann–Whitney U test

P = 0.74) and hatching rate (control 94.6% (hatched/total

eggs = 159/168); sterilized 97.7% (168/172); Fisher’s

exact test P = 0.17). By contrast, drastic differences in

post-hatch growth were recorded between the control and

the sterilized group. Survival was significantly lower in the

sterilized group than in the control group. In the sterilized

group, survival decreased drastically during the 2nd and

3rd instars, the nymphs seeming to die without feeding.

Only a few nymphs survived to adulthood in the sterilized

group (Fig. 3).

Discussion

Our results indicate that:

1. N. viridula from Japanese populations is consistently

associated with a gammaproteobacterial symbiont in

the midgut crypts;

2. the gut symbiont is genetically very closely related to

the gut symbionts of N. viridula from the Hawaiian,

North American and Brazilian populations;

3. egg-surface sterilization disrupts nymphal infection

with the symbiont, indicating vertical transmission of

the gut symbiont via egg surface contamination; and

4. experimental elimination of the symbiont results in

severe nymphal mortality and emergence of few adult

insects, indicating the obligate nature of the host–

symbiont association.

The results 1–3 are concordant with the previous studies

on Hawaiian, North American, and Brazilian populations

of N. viridula (Hirose et al. 2006; Prado et al. 2006, 2009).

The prevalent and conserved host–symbiont association

across Asia, North America, South America, and Oceania

seems suggestive of important biological roles of the gut

symbiont for N. viridula.

Result 4, on the other hand, contrasts sharply those from

previous studies on Hawaiian populations of N. viridula

(Prado et al. 2006, 2009), wherein experimental elimina-

tion of the gut symbiont caused few fitness defects in the

host. It is currently unknown why the fitness effects of the

gut symbiont differ so strikingly between the Japanese and

Hawaiian N. viridula populations. Conceivably, environ-

mental and/or genetic factors may be involved in the dif-

ference. In this study, the insects were fed with dry soybean

seeds and raw peanuts under 16 h light and 8 h dark con-

ditions, whereas in the experiment of Prado et al. (2006),

the insects were reared on green beans, cabbage, and

unsalted roasted peanuts under 14 h light and 10 h dark

conditions. The different rearing conditions may affect the

effects of the gut symbionts on their insect hosts.
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Alternatively, genetic differences of the gut symbionts and/

or the host insects between the Japanese and Hawaiian

populations could be responsible for the different fitness

consequences. In this context, it may be notable that the gut

symbionts of Japanese N. viridula insects are genetically

slightly different from the gut symbionts of the Hawaiian,

North American, and Brazilian insects (Fig. 2).

We demonstrated that the gut symbiont is required for

normal nymphal growth of Japanese N. viridula, which

accounts for the worldwide prevalence of the host–sym-

biont association. Normal growth and reproduction of

symbiont-free Hawaiian N. viridula (Prado et al. 2006,

2009) looks, at least superficially, contradictory to the

maintenance of the symbiotic association in natural host

populations. Notably, Prado et al. (2009) reported few fit-

ness defects for symbiont-free Hawaiian N. viridula insects

reared at 25 and 30�C—delayed nymphal growth, extended

life span, and ceased oviposition at 20�C were observed for

the symbiont-free insects. Hence, although speculative, the

gut symbiont could be involved in some aspects of cold

tolerance in Hawaiian populations of N. viridula. In Japan,

recent northward expansion of the distribution range of

N. viridula, which may be related to global warming, has

been reported and monitored (Kiritani 2011; Musolin 2007;

Tougou et al. 2009; Yukawa et al. 2009). How the gut

symbiont is involved in the ecological and evolutionary

processes ongoing in the Japanese populations of N. viri-

dula is of great interest, and currently under investigation.

In conclusion, we suggest that N. viridula is generally

and obligatorily associated with the gut symbiont, and that

the symbiont effect on the host biology may be different

among different geographic populations. We also point out

the possibility that the gut symbiont could be a target for

controlling this cosmopolitan insect pest, at least in Japan

and possibly in neighboring Asian countries where the

host–symbiont association is obligate.
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Fig. 2 Phylogenetic placement of the gut symbiotic bacteria of

Nezara viridula on the basis of 16S rRNA gene sequences. A

maximum likelihood phylogeny inferred from 1,221 unambiguously

aligned nucleotide sites is shown. Maximum parsimony and neighbor-

joining analyses gave substantially the same results (data not shown).

Bootstrap values higher than 50% are indicated at the nodes in the

order of maximum likelihood/maximum parsimony/neighbor-joining.

Asterisks indicate support values lower than 50%. Sequence accession

numbers are shown in brackets. For insect symbionts, the host

common name, scientific name, and/or taxon name are also indicated

in parentheses. GS gut symbiont
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Fig. 3 Effects of symbiont elimination on survival of Nezara viridula.

Black bars, untreated control group; white bars, experimental egg-

surface sterilization group. The number on each column is the total

number surviving. Asterisks indicate P values after Bonferroni correc-

tion (Fisher’s exact probability test; **P \ 0.001; ***P \ 0.0001)
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